湖北省复中蓄电池有限公司
联系我们
电话: 0710-588693
邮件: auatammmoj@aquariusscotland.com

深圳开关电源基本知识

什么是开关电源?

---- 开关电源就是用通过电路控制开关管进行高速的道通与截止.将直流电转化为高频率的交流电提供给变压器进行变压,从而产生所需要的一组或多组电压!转华为高频交流电的原因是高频交流在变压器变压电路中的效率要比50HZ高很多.所以开关变压器可以做的很小,而且工作时不是很热!!成本很低.开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。

2、开关电源与线性电源的区别?

----- 开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一点称为成本反转点。

3、开关电源的工作原理是什么?

a.交流电源输入经整流滤波成直流;

b.通过高频PWM(脉冲宽度调制)信号控制开关管,将那个直流加到开关变压器初级上;

c.开关变压器次级感应出高频电压,经整流滤波供给负载;

d.输出部分通过一定的电路反馈给控制电路,控制PWM占空比,以达到稳定输出的目的。

4、单片开关电源的两种工作模式

图1两种模式的开关电流波形

(a)连续模式(b)不连续模式

在连续模式下,初级开关电流是从一定幅度开始的,然后上升到峰值,再迅速回零。其开关电流波形呈梯形。这表明在连续模式下,由于储存在高频变压器的能量在每个开关周期内并未全部释放掉,因此下一个开关周期具有一个初始能量。采用连续模式可减小初级峰值电流IP和有效值电流IRMS,降低芯片的功耗。但连续模式要求增大初级电感量LP,这会导致高频变压器的体积增大。综上所述,连续模式适用于功率较小的TOPSwitch和尺寸较大的高频变压器。

不连续模式的开关电流是从零开始上升到峰值,再降至零的。这就意味着储存在高频变压器中的能量必须在每个开关周期内完全释放掉,其开关电流波形呈三角形。不连续模式下的IP、IRMS值较大,但所需要的LP较小。因此,它适合于采用输出功率较大的TOPSwitch,配尺寸较小的高频变压器。

5、单片开关电源反馈电路的四种基本类型?

(1)基本反馈电路;

(2)改进型基本反馈电路;

(3)配稳压管的光耦反馈电路;

(4)配TL431的光耦反馈电路。

配TL431的光耦反馈电路,其电路较复杂,但稳压性能最佳。这里用TL431型可调式精密并联稳压器来代替普通的稳压管,构成外部误差放大器,进而对UO作精细调整,可使电压调整率和负载调整率均达到±0.2%,能与线性稳压电源相媲美。这种反馈电路适于构成精密开关电源。

基本开关电源图。

开关电源原理及发展趋势

一、主电路

二、控制电路

一方面从输出端取样,经与设定标准进行比较,然后去控制逆变器,改变其频率或脉宽,达到输出稳定,另一方面,根据测试电路提供的资料,经保护电路鉴别,提供控制电路对整机进行各种保护措施。

三、检测电路

除了提供保护电路中正在运行中各种参数外,还提供各种显示仪表资料。

四、辅助电源

提供所有单一电路的不同要求电源。

第二节 开关控制稳压原理

开关K以一定的时间间隔重复地接通和断开,在开关K接通时,输入电源E通过开关K和滤波电路提供给负载RL,在整个开关接通期间,电源E向负载提供能量;当开关K断开时,输入电源E便中断了能量的提供。可见,输入电源向负载提供能量是断续的,为使负载能得到连续的能量提供,开关稳压电源必须要有一套储能装置,在开关接通时将一部份能量储存起来,在开关断开时,向负载释放。图中,由电感L、电容C2和二极管D组成的电路,就具有这种功能。电感L用以储存能量,在开关断开时,储存在电感L中的能量通过二极管D释放给负载,使负载得到连续而稳定的能量,因二极管D使负载电流连续不断,所以称为续流二极管。在AB间的电压平均值EAB可用下式表示:EAB=TON/T*E式中TON为开关每次接通的时间,T为开关通断的工作周期(即开关接通时间TON和关断时间TOFF之和)。

由式可知,改变开关接通时间和工作周期的比例,AB间电压的平均值也随之改变,因此,随着负载及输入电源电压的变化自动调整TON和T的比例便能使输出电压V0维持不变。改变接通时间TON和工作周期比例亦即改变脉冲的占空比,这种方法称为“时间比率控制”(Time Ratio Control,缩写为TRC)。

一、脉冲宽度调制(Pulse Width Modulation,缩写为PWM)

开关周期恒定,通过改变脉冲宽度来改变占空比的方式。

二、脉冲频率调制(Pulse Frequency Modulation,缩写为PFM)

导通脉冲宽度恒定,通过改变开关工作频率来改变占空比的方式。

三、混合调制

导通脉冲宽度和开关工作频率均不固定,彼此都能改变的方式,它是以上二种方式的混合。

第三节 开关电源的发展和趋势

1955年美国罗耶(GH.Roger)发明的自激振荡推挽晶体管单变压器直流变换器,是实现高频转换控制电路的开端,1957年美国查赛(Jen Sen)发明了自激式推挽双变压器,1964年美国科学家们提出取消工频变压器的串联开关电源的设想,这对电源向体积和重量的下降获得了一条根本的途径。到了1969年由于大功率硅晶体管的耐压提高,二极管反向恢复时间的缩短等元器件改善,终于做成了25千赫的开关电源。

目前,开关电源以小型、轻量和高效率的特点被广泛应用于以电子计算机为主导的各种终端设备、通信设备等几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。目前市场上出售的开关电源中采用双极性晶体管制成的100kHz、用MOS-FET制成的500kHz电源,虽已实用化,但其频率有待进一步提高。要提高开关频率,就要减少开关损耗,而要减少开关损耗,就需要有高速开关元器件。然而,开关速度提高后,会受电路中分布电感和电容或二极管中存储电荷的影响而产生浪涌或噪声。这样,不仅会影响周围电子设备,还会大大降低电源本身的可靠性。

其中,为防止随开关启-闭所发生的电压浪涌,可采用R-C或L-C缓冲器,而对由二极管存储电荷所致的电流浪涌可采用非晶态等磁芯制成的磁缓冲器。不过,对1MHz以上的高频,要采用谐振电路,以使开关上的电压或通过开关的电流呈正弦波,这样既可减少开关损耗,同时也可控制浪涌的发生。这种开关方式称为谐振式开关。

目前对这种开关电源的研究很活跃,因为采用这种方式不需要大幅度提高开关速度就可以在理论上把开关损耗降到零,而且噪声也小,可望成为开关电源高频化的一种主要方式。当前,世界上许多国家都在致力于数兆Hz的变换器的实用化研究。

开关电源

开关电源是利用现代电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一点称为成本反转点。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广阔的发展空间。

开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。另外开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。

开关电源的分类

人们在开关电源技术领域是边开发相关电力电子器件,边开发开关变频技术,两者相互促进推动着开关电源每年以超过两位数字的增长率向着轻、小、薄、低噪声、高可靠、抗干扰的方向发展。开关电源可分为AC/DC和DC/DC两大类,DC/DC变换器现已实现模块化,且设计技术及生产工艺在国内外均已成熟和标准化,并已得到用户的认可,但AC/DC的模块化,因其自身的特性使得在模块化的进程中,遇到较为复杂的技术和工艺制造问题。以下分别对两类开关电源的结构和特性作以阐述。

1.DC/DC变换

DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制方式,ton不变,改变Ts(易产生干扰)。其具体的电路由以下几类:

(1)Buck电路——降压斩波器,其输出平均电压

U0小于输入电压Ui,极性相同。

(2)Boost电路——升压斩波器,其输出平均电压

U0大于输入电压Ui,极性相同。

(3)Buck-Boost电路——降压或升压斩波器,其

输出平均电压U0大于或小于输入电压Ui,极性相反,电感传输。

(4)Cuk电路——降压或升压斩波器,其输出平均电

压U0大于或小于输入电压Ui,极性相反,电容传输。

当今软开关技术使得DC/DC发生了质的飞跃,美国VICOR公司设计制造的多种ECI软开关DC/DC变换器,其最大输出功率有300W、600W、800W等,相应的功率密度为(6.2、10、17)W/cm3,效率为(80~90)%。日本NemicLambda公司最新推出的一种采用软开关技术的高频开关电源模块RM系列,其开关频率为(200~300)kHz,功率密度已达到27W/cm3,采用同步整流器(MOS�FET代替肖特基二极管),使整个电路效率提高到90%。

2AC/DC变换

AC/DC变换是将交流变换为直流,其功率流向可以是双向的,功率流由电源流向负载的称为“整流”,功率流由负载返回电源的称为“有源逆变”。AC/DC变换器输入为50/60Hz的交流电,因必须经整流、滤波,因此体积相对较大的滤波电容器是必不可少的,同时因遇到安全标准(如UL、CCEE等)及EMC指令的限制(如IEC、、FCC、CSA),交流输入侧必须加EMC滤波及使用符合安全标准的元件,这样就限制AC/DC电源体积的小型化,另外,由于内部的高频、高压、大电流开关动作,使得解决EMC电磁兼容问题难度加大,也就对内部高密度安装电路设计提出了很高的要求,由于同样的原因,高电压、大电流开关使得电源工作损耗增大,限制了AC/DC变换器模块化的进程,因此必须采用电源系统优化设计方法才能使其工作效率达到一定的满意程度。

AC/DC变换按电路的接线方式可分为,半波电路、全波电路。按电源相数可分为,单相、三相、多相。按电路工作象限又可分为一象限、二象限、三象限、四象限。

开关电源的选用

开关电源在输入抗干扰性能上,由于其自身电路结构的特点(多级串联),一般的输入干扰如浪涌电压很难通过,在输出电压稳定度这一技术指标上与线性电源相比具有较大的优势,其输出电压稳定度可达(0.5~1)%。开关电源模块作为一种电力电子集成器件,在选用中应注意以下几点:

1.输出电流的选择

Is=KIf

If—用电设备的最大吸收电流;

K—裕量系数,一般取1.5~1.8;

2.接地

开关电源比线性电源会产生更多的干扰,对共模干扰敏感的用电设备,应采取接地和屏蔽措施,按ICE1000、EN61000、FCC等EMC限制,开关电源均采取EMC电磁兼容措施,因此开关电源一般应带有EMC电磁兼容滤波器。如利德华福技术的HA系列开关电源,将其FG端子接大地或接用户机壳,方能满足上述电磁兼容的要求。

3.保护电路

开关电源在设计中必须具有过流、过热、短路等保护功能,故在设计时应首选保护功能齐备的开关电源模块,并且其保护电路的技术参数应与用电设备的工作特性相匹配,以避免损坏用电设备或开关电源。

开关电源技术发展趋势

开关电源是利用现代电力电子技术,采用功率半导体器件作为开关,通过控制开关晶体管开通和关断的时间比率(占空比),调整输出电压,维持输出稳定的一种电源。早在20世纪80年代计算机电源全面实现了开关电源化,率先完成计算机电源换代,进入90年代开关电源已广泛应用在各种电子、电器设备,程控交换机、通讯、电力检测设备电源和控制设备电源之中。开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源和线性电源相比,两者的成本都随着输出功率的增加而增长,但两者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一点称为成本反转点。随着电力电子技术的发展和创新,使的开关电源技术也不断的创新,这一成本反转点日益向低输出电力端移动,从而为开关电源提供了广阔的发展空间。

开关电源高频化使其发展的方向,高频化使开关电源小型化,并使开关电源更进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高技术产品的小型化、轻便化。另外开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。

开关电源的发展方向是高频、高可靠、低耗、低噪声、抗干扰和模块化。由于开关电源轻、小、薄的关键技术是高频化,因此国外各在开关电源制造商都致力同步开发新型高智能化的元器件,特别是改善二次整流器件的损耗,并在功率铁氧体(Mn-Zn)材料上加大科技创新,以提高在高频率和较大磁通密度(Bs)下获得高的磁性能,而电容器的小型化也是一项关键技术。SMT技术的应用使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小薄。开关电源的高频化就必然对传统的PWM开关技术进行创新,实现ZVS、ZCS的软开关技术已成为开关电源的主流技术,并大幅提高了开关电源的工作效率。对联高可靠性指标,美国的开关电源生产商通过降低运行电流,降低结温等措施以减少器件的应力,使得产品的可靠性大大提高。

模块化是开关电源发展的总体趋势,可以用模块化电源组成分布式电源系统,可以设计成N+1冗余电源系统,并实现并联方式的容量扩展。针对开关电源运行噪声大这一缺点,若单独追求高频化,其噪声也必将随着增大,而用部分谐振转换电路技术,在理论上即可实现高频化又可降低噪声,但部分谐振转换技术实际应用仍存在着技术问题,故仍需在这一领域开展大量的工作,使得多项技术得以实用化。电力电子技术的不断创新,开关电源产业有着广阔的发展前景。要加快我国开关电源产业的发展速度就必须走技术创新之路,走出有中国特色的产学研联合发展之路,为我国国民经济的高速发展做出贡献。

工业开关电源行业有待整合

工业开关电源指输出功率不高于1500瓦,包括单路和多路输出电压,用于机械、电力、轨道交通、冶金等工业领域的开关电源产品。开关电源以其高效节能、体积小、重量轻等优点,在工业领域获得广泛应用,已成为工业领域重要的基础产品。

2008年金融危机的出现,使诸多行业受到影响。捷孚联合咨询公司日前发布的《2009国内工业开关电源市场需求报告》显示,我国工业开关电源市场需求虽然仍在增长,但竞争日益激烈,行业有待整合。

市场竞争激烈

工业开关电源市场集中度较高,行业前10家企业所占的市场份额高达76.1%。其中,市场份额最高的两家企业分别是明纬和西门子。明纬、西门子分别作为目前国内平板开关电源、导轨开关电源领域的代表性企业,是工业开关电源企业竞争的核心。

其他主要企业除了与上述两家企业竞争,也会因为企业业务组合、产品应用领域等因素,在一些特定的场合形成激烈的竞争关系,如电力领域(德创、宇峰、三基等)、工业开关电源定制业务领域(朝阳、永明等)等均有各自的竞争对手。

需求两极化明显

《报告》显示,在工业开关电源市场,高端产品约占整个市场份额的25%,低端产品约占整个市场份额的37%,而中高端、中端、中低端产品的市场份额均比较低。造成这种现象的原因是,国内工业开关电源应用领域具有独特的需求特点。如电力、轨道交通、石化、冶金等领域对高端工业开关电源的需求较大,而机械领域的大部分企业主要采购低端工业开关电源。中端产品目前的需求领域主要是一些中小型的电厂、电力设备、重型机械、少部分的石化设备等。

与需求两极化明显相对应的是,在国内工业开关电源市场,外资品牌市场份额超过60%。国内品牌主要分布在中低端和低端市场。由于高端产品和低端产品的市场份额都很大,低端产品制造企业的生存压力相对而言并不巨大,这可能会削弱国内企业向高端市场进军的动力。

电力领域品牌分散

机械、电力是国内工业开关电源的重点应用行业,机床、重型机械以及电力、轨道交通领域对开关电源的需求依旧较大。不过,与其他行业不同,在电力领域,工业开关电源品牌分散。

工业开关电源主要是用在设备配套和工程项目上。其中,机械、电力两个行业工业开关电源的用量约占国内工业开关电源市场总需求量的3/4。

《报告》显示,在不同的细分应用领域,国内工业开关电源企业也表现出不同的竞争力。例如,明纬在机械领域、德创在电力领域、朝阳在轨道交通领域处于领先位置。电力领域品牌较为分散,排名领先的企业市场占有率均在20%以下。在电力设备领域,配套应用的品牌主要以德创、宇峰、三基等企业为代表。在电力工程领域,代表性企业主要有明纬、朝阳、衡孚、菲尼克斯等。其中,菲尼克斯、朝阳工业开关电源主要应用于大型电厂及变电站项目,明纬、衡孚工业开关电源主要应用于中小型电厂及电网项目。

BACK